Phlyty - Documentation
Release 0.1.0dev

Matthew Weier O’Phinney

August 26, 2014

Contents

Overview

1.1 Installation 0 e e e e e e e e e e e
1.2 BasicUsage o v i e e e e e e e e e e e e e
Routes

2.1 Constraints and Defaults e e
Controllers

3.1 Anonymous Function e
3.2 ClOSUIES & v v v v e e e e e e e e e e e e e e e
3.3 Lambdas e e e e e e
34 Named Functions e e e e e e
3.5 StaticClass Methods e e
3.6 Instance Methods e e e
377 FUunctors e e e e e
Helpers

4.1 Workflow Helpers e e e
42 HTTP-Related Helpers o o o i e e e e e e e e e e e e e e
4.3 Route-Related Helpers e
4.4 View-Related Helpers o . . o o e e e e e
Events

5.1 DefinedEvents e e e e e e
52 UseCases. . . . v v v it e e e e e e e e e
Views

6.1 The Viewlnterface e e e e e
6.2 Mustache Integration e
Api docs

Getting help

Indices and tables

13
13
15
16
16

19
20
20

23
23
23

25

27

29

Phlyty - Documentation, Release 0.1.0dev

Phlyty is a PHP microframework written on top of Zend Framework 2 components.

Contents:

Contents 1

http://packages.zendframework.com/

Phlyty - Documentation, Release 0.1.0dev

2 Contents

CHAPTER 1

Overview

Phlyty is a PHP microframework written using Zend Framework 2 components. It’s goals are:
* Route based on HTTP method and path, but allow the full spectrum of ZF2 routes.
* Allow any callable as a “controller”.
 Provide basic features and helpers surrounding flash messages, URL generation, and request/response handling.
 Provide view rendering out-of-the-box, but allow the user to plugin whatever view rendering solution they desire.

The features and API are roughly analagous to Slim Framework.

1.1 Installation

I recommend using Composer <https://getcomposer.org/>. Once you have composer, create the following
composer. json file in your project:

{
"repositories": [
{
"type": "composer",
"url": "http://packages.zendframework.com/"
}
]I
"minimum-stability": "dev",
"require": {
"phly/phlyty": "dev-master"
}
}

Then run php composer.phar install toinstall the library. This will ensure you retrieve Phlyty and all its
dependencies.

1.2 Basic Usage

The most basic “Hello World!” example looks something like this:

use Phlyty\App;
include ’vendor/autoload.php’;

http://packages.zendframework.com
http://www.slimframework.com

Phlyty - Documentation, Release 0.1.0dev

Sapp = new App();
Sapp->get (/' /', function (Sapp) {
echo "Hello, world!";

}) i
Sapp->run () ;

Assuming the above is in index . php, you can fire up the PHP 5.4 development web server to test it out:

php -S 127.0.0.1:8080

If you then visit http://localhost : 8080/, you'll see your “Hello, world!” text.

1.2.1 Routing

The main Phlyty\App class contains methods for each of the main HTTP request methods, and these all have the
same APL: method ($Sroute, $controller). They include:

* get ()

* post ()

* put ()

¢ delete ()
* options()
* patch ()

All of them return a Phlyty\Route object, allowing you to further manipulate the instance — for example, to name
the route, indicate what additional HTTP methods to respond to, or to access the controller or the composed ZF2 route
object. (You can actually instantiate a ZF2 route object and pass that instead of a string for the route, which gives you
more power and flexibility!)

Sapp->map (' /', function (Sapp) {
echo "Hello, world!";
})—>name (' home’); // name the route

Alternately, you can use teh map () method. This simply creates the route, but does not assign it to a specific HTTP
method. You would then use the via () method of the route object to assign it to one or more HTTP methods:

Sapp->map (' /', function (Sapp) {
echo "Hello, world!";
})->via(’get’, ’'post’)->name(’'home’); // name the route, and have it respond
// to both GET and POST requests

By default, if you pass a string as the $route argument, Phlyty\App will create a ZF2 Segment route; you can
read up on those in the ZF2 manual. In such routes, a string preceded by a colon will indicate a named variable to
capture: /resource/:id would capture an “id” value. You can have many named segments, and even optional
segments.

1.2.2 Controllers and Helpers

Your controllers can be any PHP callable. In the examples, I use closures, but any callable is accepted. The callable
will receive exactly one argument, the Ph1lyty\App instance.

From the App instance, you have the following helper methods available:

4 Chapter 1. Overview

http://packages.zendframework.com/docs/latest/manual/en/modules/zend.mvc.routing.html#zend-mvc-router-http-segment

Phlyty - Documentation, Release 0.1.0dev

e params () returns a Zend\Mvc\Router\RouteMatch instance, from which you can then pull values. In
the example in the previous paragraph, you can pull the “id” using $app—->params () —>getParam(’ id’,
false).

e request () returns a Zend\Http\PhpEnvironment\Request instance. This gives you access to
headers, query, post, cookie, files, env, and system parameters. In most cases, you use get Type (Sname,
Sdefault); e.g. S$Sapp->request () ->getQuery (' name’, ’'Matthew’) would retrieve the
“name” query string value, using “Matthew” as the default.

* response () returns a Zend\Http\PhpEnvironment \Response instance. This allows you to manip-
ulate response headers, and to set the response body.

e flash($name, Smessage) lets you both set and receive flash messages.

e urlFor ($route = null, array S$params = [], array Soptions = []) allows you to
generate a URI based on the routes you’ve created. If you pass no arguments, it assumes it should use the
current route. Otherwise, you must pass a route name; as such, it’s good practice to name your routes. (Any
$params you provide will be used to replace named segments in the route.)

* pass () tells the application to move on to the next matching route, if any.

e redirect ($uri, $status 302) will redirect. Hint: use ur1For () to generate the Suri value!

* halt (Sstatus, Smessage) halts execution immediately, and sends the provided message.
e stop () halts execution, sending the current response.

* events () accesses the composed event manager, allowing you to register listeners and trigger events.
e event () returns a Phlyty\AppEvent instance with the current route composed.

* trigger triggers an event.

e view () returns the view renderer, which should implement Phlyty\View\ViewInterface. You can
call setView () to change the view implementation. Additionally, you can always instantiate and use your
own view implementation.

e viewModel () returns a ZendViewModelModellnterface‘ implementation; by default, it’s of type
Phlyty\View\MustacheViewModel. This allows you to inject variables, set the template, etc. If
you want to use an alternate view model, either directly instantiate it, or provide a prototype instance to
setViewModelPrototype ().

* render ($template, $viewModel = []) will render a template and/or a view model, and place the
rendered content into the Response body.

1.2. Basic Usage 5

Phlyty - Documentation, Release 0.1.0dev

6 Chapter 1. Overview

CHAPTER 2

Routes

Routing in Ph1lyty is the act of matching both an HTTP request method and path information to the controller which
will handle it.

Withing Phlyty, Zend Framework 2 routes are used. By default, ZF2’s “Segment” route is used. Visit the Zend
Framework 2 documentation for full documentation of the segment route.

At its most basic, the segment route takes literal paths interspersed with named captures of the form :name, called
segments. The segment name must consist of alphanumeric characters only. Additionally, you can indicate optional
captures using brackets (“[” and “T”). These two simple rule allow using segments in creative ways:

e /calendar/event/:year—-:month-:day.: format would match “/calendar/event/2012-08-19.json”,
and capture year as “2012”, month as “08”, day as “19”, and format as “json”.

¢ /news/:post [/ :page] would match both “/news/foo-bar” as well as “/news/foo-bar/3”.

All that said, you may desire more flexibility at times.

2.1 Constraints and Defaults

For example, what if you want to add constraints to your named segments? As an example, what if “page”, or “year”,
or “month”, or “day” should only ever consist of digits?

What if you want to supply defaults for some values?

To do these things, create the ZF2 route manually, and then pass it to the appropriate HTTP-specific method of
Phlyty\App. As an example, let’s work with the “calendar” route we established above. We’ll provide both con-
straints and defaults for the route.

use Phlyty\\App;
use Zend\Mvc\Router\Http\Segment as SegmentRoute;

Sroute = SegmentRoute::factory (array (
"route’ => ’/calendar/event/:year-:month-:day/[.:format]’,
"constraints’ => array (
"year’ => 20\d{2}'",
"month’ => " (0|1)\d’,
"day’ => "(011]2|3)\d’,
"format’ => ' (html|json|xml)’,
) 4
"defaults’ => array (

"format’ => "html’,
)I
)) i

http://packages.zendframework.com/docs/latest/manual/en/modules/zend.mvc.routing.html#zend-mvc-router-http-segment
http://packages.zendframework.com/docs/latest/manual/en/modules/zend.mvc.routing.html#zend-mvc-router-http-segment

Phlyty - Documentation, Release 0.1.0dev

Sapp = new App();

Sapp->get (Sroute, function (Sapp) {
// handle route here
})—>name (' calendar’);

Note how we pass the SegmentRoute instance as the argument to $Sapp—->get (). This allows us to create a fully-
configured, robust route instance with constraints and defaults, while still honoring the interface that Phlyty\\App

offers.
You could extend this to provide tree routes, literal routes, and more; basically, any route type Zend Framework 2

provides may be used.

For more information on ZF2 routes, please visit the ZF2 routes documentation.

Chapter 2. Routes

http://zf2.readthedocs.org/en/latest/modules/zend.mvc.routing.html

CHAPTER 3

Controllers

Controllers are simply any PHP callable. Controllers will receive exactly one argument, the Ph1lyty\App instance
that invokes the controller.

Controllers can thus be:
* anonymous functions, closures, or lambdas
¢ named functions
e static class methods
* instance methods
* functors (classes defining __invoke ())

This also means you can define and configure your controllers where you want.

3.1 Anonymous Function

Anonymous functions are functions not assigned to a variable, and defined in-place. Using an anonymous function is
perhaps the easiest way to define a controller.

Sapp->get (' /', function (Sapp) {
// do work here
}) i

3.2 Closures

Closures are anonymous functions that import variables from the current scope into the scope of the function. This is
done using the use directive when declaring the function.

Sconfig = include ’config.php’;

Sapp->get (/' /', function (Sapp) use (Sconfig) {
// You can access S$config now.
// Do work here.

1)

Phlyty - Documentation, Release 0.1.0dev

3.3 Lambdas

Lambdas are anonymous functions or closures that are assigned to a variable; this allows using them in multiple
contexts, as well as passing them around by variable.

// As a normal lambda

Slambda = function (Sapp) {
// Do work here.

}i

Sapp->get (' /', Slambda);

// As a closure

Sconfig = include ’config.php’;

Slambda = function ($app) use (Sconfig) {
// You can access Sconfig now.
// Do work here.

}i

Sapp->get (' /', S$lambda);

3.4 Named Functions

You can also declare functions either in the global namespace or within a user-defined namespace, and pass the string
function name.

namespace My
{
function home (Sapp)
{
// do work here

Sapp->get (' /', "My\\home’) ;

3.5 Static Class Methods

Static class methods may also be used. You may pass these either in the form of [$className, S$method] or
ClassName: :method.

namespace My
{

class Hello

{

public static function world($Sapp)

{
// do work here...

// Using array callback notation
Sapp->get (’ /hello/:name’, ['My\Hello’, ’'world’]);

10 Chapter 3. Controllers

Phlyty - Documentation, Release 0.1.0dev

// Using string callback notation
Sapp->get (/ /hello/:name’, ’'My\Hello::world’);

3.6 Instance Methods

A typical PHP instance method callback can be used. This is great for situations where you have configurable stateful
behavior.

namespace My
{

class Hello

{

protected Sconfig;

public function __ construct (Sconfig)
{

$this->config = Sconfig;

public static function world ($Sapp)

{
// do work here. ..

Sconfig = include ’'config.php’;
Shello = new My\Hello(Sconfiqg);

// Using array callback notation
Sapp->get (' /hello/:name’, [Shello, ’'world’]);

3.7 Functors

“Functors” are objects that define the magic method ___invoke, and can thus be called as if they are a function.
(Interesting trivia: this is basically how the PHP internal class C1losure works.) In such an object, you’d simply have
a single method that could act as a controller, the ___invoke () method. You must instantiate a functor for it to work
as such, however.

namespace My
{

class Hello

{

protected S$Sconfig;

public function __ construct (Sconfig)
{

Sthis->config = Sconfig;

public static function ___invoke ($app)
{
// do work here. ..

3.6. Instance Methods 11

Phlyty - Documentation, Release 0.1.0dev

$config = include ’'config.php’;
O new My\Hello (Sconfiqg);

2
1]

// As a functor
Sapp->get (’ /hello/:name’, S$hello);

12

Chapter 3. Controllers

CHAPTER 4

Helpers

Phlyty ships with a number of built-in helper methods in the Ph1lyty\App class. These fall under roughly four
categories:

» Workflow-related helpers (halt, stop, pass, redirect, events, event, trigger, getLog)
e HTTP-related helpers (request, response)
* Route-related helpers (params, urlFor)

* View-related helpers (view, viewModel, render, flash)

4.1 Workflow Helpers

Workflow helpers shape the flow of the application. They allow you to return from execution early, either because the
response is ready, or because we know an error condition has occurred; redirect to another URI; pass on execution to
another route and controller; or work with events.

halt ($status, $message=’’) Halts execution immediately, setting the response status to $status, and, if
$message is provided, setting the response body to that message. No further code will be executed in the
controller following this call.

Sname = Sapp->params (' name’, false);
if (!Sname) {

Sapp->halt (500, ’'Missing name; cannot continue execution’);
}

// do something with Sname now...

stop () Halts execution, sending the response as it currently exists. You might call this if you wanted to return a file
download, for instance.

Simage = Sapp->params (’image’, false);

if (Simage && file_exists(Simage)) {
Sstream = fopen($image, 'r’);
Sout = fopen (’php://output’, ’"w’);
stream_copy_to_stream($Sstream, Sout);
Sapp->response () ->setBody (Sout) ;

Sapp->stop () ;
}

// show some error message here...

pass () Tells the application that no more processing of this controller should be done, but that it should continue
iterating through routes to look for another one that matches the current URIL.

13

Phlyty - Documentation, Release 0.1.0dev

Sapp->get (' /:1locale’, function (Sapp) {
Slocale = S$app—->params () —>getParam(’ locale’, ’'en_US’");
Locale: :setDefault (Slocale);
Sapp->pass () ;

1)

Sapp->get (' /[:1locale]’, function (Sapp) {
// This matches the previous route, which means when pass() 1s
// called by the previous controller, this route will be matched
// and this controller invoked.
//
// Display home page

1)

redirect ($url, $status = 302) Sets the response status code to $status and the Locat ion header to
Surl, and immediately halts execution and sends the response. Any code following the call in the controller
will not be executed.

Sapp->get (' /user/:username’, function (Sapp) {
Susername = Sapp->params () ->getParam(’username’, false);
if (!Susername) {
Sthis->redirect (' /login’);
}

// Code below here will only execute if we did not redirect

)i

events () ReturnsaZend\EventManager\EventManager instance. This allows you to attach event listeners
as well as trigger events. See the section on events for more information.

Sapp->events () —>attach (' route’, function (Se) use (Sapp) {
Sroute = S$e->getRoute () ;
if (!in_array(Sroute->getName (), [’'profile’, ’comment’, ’'post’]) {
return;

// check if we have an authenticated user, and throw an exception
// otherwise

/7

}, —-10); // registering to execute after routing finishes

event () Returns a new Phlyty\AppEvent instance with the target set to the Phlyty\App instance, and the
route populated with the currently matched route.

trigger ($name, array $params = []) Trigger the named event, optionally passing parameters to com-
pose in the Phlyty\\AppEvent instance.

Sapp->get (' /', function (Sapp) {
Sapp->trigger (' homepage’, Sapp->params ()->getParams());

)i

getLog () Gets the currently registered Zend\Log\Logger instance, lazy-loading one if none is present. You
will need to attach writers to the log instance, and then invoke one or more logging methods.

Slogger = Sapp->getLog()

Slogger->addWriter (' stream’, [
"stream’ => ’'php://stderr’,
’log_separator’ => "\n",

1)

Slogger—->info (' This is an informational message’);

14 Chapter 4. Helpers

Phlyty - Documentation, Release 0.1.0dev

4.2 HTTP-Related Helpers

A web application is really about receiving an HTTP request, deciding what to do with it, and returning an HTTP
response back to the client. In Phlyty\App, the request and response objects help you with this.

request () Returns the request object. See the ZF2 Zend\Http\PhpEnvironment\Request documentation for more
details.

// Getting query string (aka GET) parameters
Squery = Sapp->request () ->getQuery();
$single = S$app->request () ->getQuery ($name, S$default);

// Getting POST parameters
Spost = Sapp->request () ->getPost () ;
Ssingle = S$Sapp->request () ->getPost ($name, S$default);

// Getting headers

Sheaders = Sapp->request () —>getHeaders();

Sheader = Sapp->request () ->getHeader ($Sname, S$default);
Svalue = Sheader->getFieldvValue();

// Getting ENV values
Svalues = Sapp->request () ->getEnv () ;
Svalue = Sapp->request ()->getEnv($name, S$default);

// Getting $_SERVER values
Svalues = Sapp->request () ->getServer();
Svalue = Sapp->request ()->getServer (Sname, S$default);

// Get the URI
Suri = Sapp->request ()->getUri(); // Zend\Uri\Uri object
Suri = Sapp->request () ->getUriString(); // string

// Get the Cookie header
Scookies = Sapp->request () ->getCookie();
Scookie = Scookie[ScookieNamel];

// Testing request type
Sapp->request () —>isXmlHttpRequest () ;
Sapp->request () —>1isGet () ;
Sapp->request () —>isPost () ;
Sapp->request () —>isPut () ;
Sapp->request () —>isDelete();
Sapp->request () ->1sOptions();
Sapp->request () ->isPatch();

// The base url should be auto-detected, but you can also set it explicitly
Sapp->request () —>setBaseUrl (/ /~matthew/sites/foo’);

response () Returns the response object. See the ZF2 Zend\Http\PhpEnvironment\Response documentation for
more details.

// Setting a header
Sapp->response () —>getHeader () —>addHeaderLine ($name, Svalue);

// Setting the status code
Sapp->response () —>setStatusCode (201) ;

4.2. HTTP-Related Helpers 15

http://packages.zendframework.com/docs/latest/apidoc/classes/Zend.Http.PhpEnvironment.Request.html
http://packages.zendframework.com/docs/latest/apidoc/classes/Zend.Http.PhpEnvironment.Response.html

Phlyty - Documentation, Release 0.1.0dev

// Setting the response body
Sapp—>response () —>setContent (Scontent) ;

4.3 Route-Related Helpers

The main purpose of a microframework is to map URL paths to their handlers. Once you have, there are two principal
route-related activities you will be performing in most requests: you will need to access parameters matched in the
URL, and you will need to generate URLs based on the routes you’ve defined.

params () Returns the Zend\Mvc\Router\RouteMatch instance returned by the route that matched the URL. The
API is roughly as follows:

sapp->params () ;
rams—>getParam(’ single’, ’'default value’);
= S$params—>getParams () ;

urlFor ($route = null, array $params = [], array $options = []) Generates a URL
based on the named $route, using $params to fill in named segments in the URL, and any route-specific
generation Soptions provided. If Sroute is not present, it will assume the current matched route; if
Sparams is not present, any defaults used when creating the route will be used.

If a base URL is present in the request, it will be prepended to the generated URL.

Sapp->get (' /blog[/:year[/:month[/:day]]]’, funection (Sapp) {
/S
}) —>name (" blog-by-date’);

Surl = Sapp->urlFor ('blog-by-date, [
"year’ => 2012,
"month’ => 708",
rdayl’] = 21,

1); // "/blog/2012/08/21"

4.4 View-Related Helpers

The goal of a controller is to produce a response to return to the client. In most cases, that response will contain
some content. In web applications, this is typically referred to as a “View” (from the design pattern “Model-View-
Controller”, or “MVC”). Typically, the “view” is functionality that renders a template.

Phlyty provides helpers for setting and retrieving the view object that will be used to render templates, as well as a
method for actually rendering a named template using the current view object. Other helpers allow you to set a “view
model” — an object that encapsulates the data you wish to represent in the view — as well as retrieve instances of that
view model. Finally, Phlyty provides functionality for setting and retrieving “flash” messages — messages you wish
to present in the view layer — but most likely on a subsequent page (typically following a redirect — for instance, to
indicate that a record was updated).

¢ View-related helpers (view, viewModel, render, flash)

setView (Phlyty\View\ViewInterface $view) Sets the view object. The ViewInterface defines
simply a method render ($template, S$viewModel = []).

view () Retrieves the current view object, which should implement the ViewInterface. By default, this is
Phlyty\View\MustacheView, which is an implementation that utilizes phly_mustache, a Mustache im-
plementation.

16 Chapter 4. Helpers

http://packages.zendframework.com/docs/latest/apidoc/classes/Zend.Mvc.Router.RouteMatch.html
http://weierophinney.github.com/phly_mustache
http://mustache.github.com
http://mustache.github.com

Phlyty - Documentation, Release 0.1.0dev

setViewModelPrototype ($model) Allows specifying a prototype object to use for view models. The object
provided will be cloned when retrieved later.

Smodel = new stdClass () ;
Sapp->setViewModelPrototype ($model) ;

viewModel () Retrieves a clone of the currently registered view model object. By default, if none has been regis-
tered, an instance of Phlyty\View\MustacheView is provided.

Sm = Sapp->viewModel () ;

Smoc ->foo = S$Sbar;
Smodel->bindHelper ('bar’, function () {
return Sthis->_ escaper () ->escapeHtml ($this->foo) . "!7;
1)
render ($template, $viewModel = []) Renders a named $template using the currently registered

view object, and passing the specified $viewModel, if any. It is up to the view object to resolve the tem-
plate name to a resource it may use, and to determine how to utilize the $viewModel provided.

Once the content is rendered, it’s injected as the content of the response object.

Sapp->render (' pages/foo’, S$model);

flash($name, $message = null) Create or retrieve a flash message. Flash messages expire after a single
“hop”; in other words, after more than one page visit, the flash message will disappear. If you pass just a $name
to flash (), it will attempt to retrieve the message; passing a Smessage to it will set it.

By default, the MustacheViewModel composes the $app instance, allowing you to retrieve flash messages.
As an example, you could do the following to create a view variable for retrieving a formatted message:

= Sapp->viewModel () ;

1->bindHelper ('messages’, function () {
ge Sthis->__ _app()—->flash ('’ foo’);

e)) |

Sm e —
2Ine < =

if (empty (S
return '’ ;

}

return sprint (
<div class="flash">%s</div>’,
Sthis->__escaper () —>escapeHtml ($me

)i
)i

For more about views, see the section on Views.

4.4. View-Related Helpers 17

Phlyty - Documentation, Release 0.1.0dev

18 Chapter 4. Helpers

CHAPTER 5

Events

Phlyty\App composes a Zend\EventManager\EventManager instance. This allows you to trigger events, and attach
listeners to events. It also allows the application to trigger events — and for you as a developer to write listeners for
those events.

To attach to an event, you simply call attach () ; the first argument is the event name, the second is a valid PHP
callable, usually a closure.

$events = Sapp->events();

Sevents—>attach (’do’, function (Se) {
echo "I’ve been triggered!";

Sevents->trigger('do’); // "I’ve been triggered!"

The EventManager allows you to specify the priority at which a listener is triggered. This allows you to order
listeners — but, more importantly, it allows you to decide when a listener is triggered in relation to the default listeners.
This is important when you consider that the application triggers a number of events; many of these have listeners
registered by default in the application, at the default priority. This means:

* If you register with a higher (positive) priority, the listener will be triggered earlier.
* If you register with a lower (negative) priority, the listener will be triggered later.
The priority argument comes after the listener argument.

Sevents = Sapp->events();

Sevents—>attach (’do’, function (Se) {
echo "Default priority\n";

}) i

Sevents—->attach (’do’, function (5e) {
echo "Low priority\n";

}, —-100);

Sevents—>attach (’do’, function (Se) {
echo "High priority\n";

b, 100);

Sevents—->trigger ('do’);
/% output:

High priority
Default priority

19

http://zf2.readthedocs.org/en/latest/modules/zend.event-manager.event-manager.html

Phlyty - Documentation, Release 0.1.0dev

Low priority

\ %/

5.1 Defined Events

As noted previously, the application triggers several events, some of which have default handlers defined.
begin Triggered at the very beginning of run ().

route Triggered during routing. A default route listener is defined and registered with default priority.
halt Triggered when halt () is invoked.

404 Triggered if no route matches the current URL.

501 Triggered if a controller bound to a route cannot be invoked (usually because it’s not a valid callable).
500 Triggered when an exception is raised anywhere during run ().

finish Triggered immediately prior to sending the response.

5.2 Use Cases

You may attach to any of these events in order to alter the application work flow.

5.2.1 Error Pages

As an example, if you wish to display a 404 page for your application, you might register a listener as follows:

Sapp->events () —>attach(’404’, function (Se) {
Sapp = Se->getTarget () ;
Sapp->render (7404");

)i

You could do similarly for 500 and 501 errors.

5.2.2 Caching

You could implement a quick-and-dirty caching layer using the “begin” and “finish” events.

// Assume we’ve instantiated Scache prior to this
Sapp->events () —>attach (’begin’, function (Se) use (Scache) {
= Se->getTarget();
S 1 pp—>request () ;
if (!sreg->isGet()) {

return;

Sapp

J->getUriString();

| ~he->get (Surl);

if (!Sdata) {
return;

Sdata =

}

20 Chapter 5. Events

Phlyty - Documentation, Release 0.1.0dev

Sapp—->response () —>setContent ($data) ;
Sapp—->response () —>send () ;
exit ();
}, 1000); // register at high priority
Sapp->events () —>attach(’ finish’, function (S$e) use (Scache) {
Sapp = S$Se->getTarget ();
if (!Sapp->request ()->isGet ()) {
return;

(

if (!Sapp->response()->1s0k()) {
return;

= Sapp->request () ->getUriString () ;
ta = Sapp->response () ->getContent () ;
ache->save (Surl, S$Sdata);

}, —-1000); // register at low priority
The above would look for a cache entry matching the current URI, but only if we have a GET request. If a cache entry
is found, we set the response content with the data, send it, and exit immediately.

Otherwise, when the request is finished, we check if we had a successful GET request, and, if so, save the response
body into the cache using the current request URIL.

5.2. Use Cases 21

Phlyty - Documentation, Release 0.1.0dev

22

Chapter 5. Events

CHAPTER 6

Views

Views are the presentation layer of the application. Typically, you will use a templating engine to create the presenta-
tion, though Phlyty makes no assumptions about what or how that engine works. It only requires that you provide a
class implementing Phlyty\View\ViewInterface that provides a render method; it is then up to you to pass
the two arguments to that method on to your templating engine in order to obtain a representation.

If the above does not suit your needs, you can, of course, always instantiate your own view objects and use them as
you see fit in the application.

6.1 The Viewlinterface

The ViewInterface is a trivial definition:

namespace Phlyty\View;

interface ViewInterface

{
J x*
* Render a template, optionally passing a view model/variables
*
* @param string Stemplate
* @param mixed SviewModel
* @return string
\x/
public function render (Stemplate, SviewModel = []);

6.2 Mustache Integration

Phlyty uses phly_mustache <http://weierophinney.github.com/phly_mustache by default, and provides some conve-
nience classes and functionality around this templating engine.

First, it provides Phlyty\View\MustacheView. This is a simple extension of Phly\Mustache\Mustache
that alters the render () method to make it suit the ViewInterface.

Second, it provides Phlyty\View\MustacheViewModel. This class can simplify creation of your view models
by providing several convenience features. First, it composes the application instance, as well as an instance of
Zend\Escaper\Escaper. These allow you to access any application helpers you might want when providing
your view representation, as well as context-specific escaping mechanisms (for instance, to escape CSS, JavaScript,
HTML attributes, etc.). Additionally, it provides a convenience method, bindHelper (), which allows you to create

23

Phlyty - Documentation, Release 0.1.0dev

closures as model properties, and have them bound to the model instance; this allows the closures to have access to
the model via $this, and thus access the application and escaper instances, as well as all properties.

The application instance is available via the pseudo-magic method ___app (), and the escaper via __escaper ().

Smodel = Sapp->viewModel () ;

el->route = ’'bar’;

el->bindHelper (’1link’, function () {

return Sthis->_ app()->urlFor (Sthis->route);

)i

The template might look like this:

You should visit

24 Chapter 6. Views

CHAPTER 7

Api docs

¢ API docs are available.

25

Phlyty - Documentation, Release 0.1.0dev

26

Chapter 7. Api docs

CHAPTER 8

Getting help

¢ Issue Tracker

27

https://github.com/weierophinney/phlyty

Phlyty - Documentation, Release 0.1.0dev

28

Chapter 8. Getting help

CHAPTER 9

Indices and tables

* genindex
* modindex

e search

29

	Overview
	Installation
	Basic Usage

	Routes
	Constraints and Defaults

	Controllers
	Anonymous Function
	Closures
	Lambdas
	Named Functions
	Static Class Methods
	Instance Methods
	Functors

	Helpers
	Workflow Helpers
	HTTP-Related Helpers
	Route-Related Helpers
	View-Related Helpers

	Events
	Defined Events
	Use Cases

	Views
	The ViewInterface
	Mustache Integration

	Api docs
	Getting help
	Indices and tables

